
1 INTRODUCTION 

Spatial and spatio-temporal distributions of both
physical and socioeconomic phenomena can be
approximated by functions depending on location in
a multi-dimensional space, as multivariate scalar,
vector, or tensor fields. Typical examples are
elevations, climatic phenomena, soil properties,
population densities, fluxes of matter, etc. While
most of these phenomena are characterised by
measured or digitised point data, often irregularly
distributed in space and time, visualisation, analysis,
and modelling within a GIS are usually based on a
raster representation. Moreover, the phenomena can
be measured using various methods (remote sensing,
site sampling, etc.) leading to heterogeneous datasets
with different digital representations and resolutions
which need to be combined to create a single spatial
model of the phenomenon under study.

Many interpolation and approximation methods
were developed to predict values of spatial phenomena
in unsampled locations (for reviews see Burrough 1986;
Franke 1982a; Franke and Nielson 1991; Lam 1983;
McCullagh 1988; Watson 1992; and for a discussion of
Kriging and error, see Heuvelink, Chapter 14). In GIS
applications, these methods have been designed to
support transformations between different discrete and
continuous representations of spatial and spatio-
temporal fields, typically to transform irregular point

or line data to raster representation, or to resample
between different raster resolutions.

2 PROBLEM FORMULATION AND CRITERIA
FOR SOLUTIONS 

The general formulation of the spatial interpolation
problem can be defined as follows:

Given the N values of a studied phenomenon zj,
j = 1, … , N measured at discrete points rj = (xj

[1],
xj

[2], ... , xj
[d]), j = 1, ... , N within a certain region of

a d-dimensional space, find a d-variate function F(r)
which passes through the given points, that means,
fulfils the condition

F(rj) = zj, j = 1, ... ,N (1)

Because there exist an infinite number of functions
which fulfil this requirement, additional conditions
have to be imposed, defining the character of
various interpolation techniques. Typical examples
are conditions based on geostatistical concepts
(Kriging), locality (nearest neighbour and finite
element methods), smoothness and tension
(splines), or ad hoc functional forms (polynomials,
multi-quadrics). Choice of the additional condition
depends on the character of the modelled
phenomenon and the type of application.
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Finding appropriate interpolation methods for
GIS applications poses several challenges. The
modelled fields are usually very complex, data are
spatially heterogeneous and often based on far from
optimal sampling, and significant noise or
discontinuities can be present (e.g. see De Floriani
and Magillo, Chapter 38). In addition, datasets can
be very large (N ≈ 103–106), originating from various
sources with different accuracies. Reliable
interpolation tools, suitable for GIS applications,
should therefore satisfy several important demands:
accuracy and predictive power, robustness and
flexibility in describing various types of phenomena,
smoothing for noisy data, d-dimensional
formulation, direct estimation of derivatives
(gradients, curvatures), applicability to large
datasets, computational efficiency, and ease of use.

Currently, it is difficult to find a method which
fulfils all of the above-mentioned requirements for a
wide range of georeferenced data. Therefore, the
selection of an adequate method with appropriate
parameters for a particular application is crucial.
Different methods can produce quite different
spatial representations (Plate 26 (a)–(f)) and in-
depth knowledge of the phenomenon is needed to
evaluate which one is the closest to reality. The use
of an unsuitable method or inappropriate
parameters can result in a distorted model of spatial
distribution, leading to potentially wrong decisions
based on misleading spatial information. An
inappropriate interpolation can have even more
profound impact if the result is used as an input for
simulations, where a small error or distortion can
cause models to produce false spatial patterns
(Mitasova et al 1996), as illustrated in section 4.2.2
(Plate 27(b)): see also Heuvelink (Chapter 14) for a
discussion of error propagation. Quantitative
evaluation of interpolation predictive capabilities,
for example by cross-validation, is often not
sufficient for the selection of an appropriate
interpolation method, as the preservation of
geometrical properties is in some cases more
important than actual accuracy (see Hutchinson
and Gallant, Chapter 9). Advanced visualisation
and analysis of slope, aspect, and curvature is
helpful in detecting geometrical distortions (Brown
et al 1995; Mitas et al 1997; Mitasova et al 1995;
Nielson 1993; Wood and Fisher 1993).

3 METHODS 
In recent years, GIS capabilities for spatial
interpolation have improved by integration of

advanced methods within GIS, as well as by linking
GIS to systems designed for modelling, analysis, and
visualisation of continuous fields. Because it is
impossible to cover all or even most of the existing
interpolation techniques, only methods which are
often used in connection with GIS or have the
potential to be widely used for GIS applications are
included, and references are given to literature for
more detailed descriptions.

3.1 Local neighbourhood approach

Local methods are based on the assumption that
each point influences the resulting surface only up to
a certain finite distance. Values at different
unsampled points are computed by functions with
different parameters, and the condition of continuity
between these functions is defined only for some
approaches. The method of point selection used for
the computation of the interpolating function differs
among the various methods and their concrete
implementations.

3.1.1  Inverse distance weighted interpolation (IDW) 
This is one of the simplest and most readily available
methods. It is based on an assumption that the value
at an unsampled point can be approximated as a
weighted average of values at points within a certain
cut-off distance, or from a given number m of the
closest points (typically 10 to 30). Weights are
usually inversely proportional to a power of distance
(Burrough 1986; Watson 1992) which, at an
unsampled location r, leads to an estimator

(∑m
i=1z(ri) / |r – ri|

p

F(r) =  
m
∑
i=1

wi z(ri) = (2)
∑m

j=11/| r – rj|
p

where p is a parameter (typically p=2; for more
details on the influence of this parameter see Watson
1992). While this basic method is easy to implement
and is available in almost any GIS, it has some well-
known shortcomings that limit its practical
applications (Burrough 1986; Franke and Nielson
1991; Watson 1992). The method often does not
reproduce the local shape implied by data and
produces local extrema at the data points (Plate 26
(c)). A number of enhancements has been suggested,
leading to a class of multivariate blended IDW
surfaces and volumes (Franke and Nielson 1991;
Tobler and Kennedy 1985; Watson 1992). However,
most of these modifications are not implemented
within GIS.
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3.1.2  Natural neighbour interpolation 
This uses a weighted average of local data based on
the concept of natural neighbour coordinates
derived from Thiessen polygons (Boots, Chapter 36)
for the bivariate, and Thiessen polyhedra for the
trivariate case (Watson 1992). The value in an
unsampled location is computed as a weighted
average of the nearest neighbour values with weights
dependent on areas or volumes rather than
distances. The number of given points used for the
computation at each unsampled point is variable,
dependent on the spatial configuration of data
points. Natural neighbour linear interpolation leads
to a rubber-sheet character of the resulting
surface. The addition of blended gradient
information (derived from data points by local
‘pre-interpolation’) allows the surface to be made
smooth everywhere with tautness, analogous to
tension, tuned according to the character of the
modelled phenomenon. The value of tautness is
controlled by two empirically selected parameters
which modify the shape of the blending function.
The result is a surface with smoothly changing
gradients and passing through data points, blended
from natural neighbour local trends, with local
tunable tautness, and with the capability to calculate
derivatives and integrals. The method has been used
typically for topographic, bathymetric, geophysical,
and soil data (Laslett et al 1987; McCauley and
Engel 1997; Watson and Philip 1987).

3.1.3 Interpolation based on a triangulated irregular
network (TIN) 

This uses a triangular tessellation of the given point
data (Boots, Chapter 36) to derive a bivariate
function for each triangle which is then used to
estimate the values at unsampled locations. Linear
interpolation uses planar facets fitted to each
triangle (Akima 1978; Krcho 1970; Plate 26(b)).
Non-linear blended functions (e.g. polynomials) use
additional continuity conditions in first-order, or
both first- and second-order derivatives (C1, C2),
ensuring smooth connection of triangles and
differentiability of the resulting surface (Akima
1978; McCullagh 1988; Nielson 1983; Renka and
Cline 1984). Because of their local nature, the
methods are usually fast, with an easy incorporation
of discontinuities and structural features.
Appropriate triangulation respecting the surface
geometry is crucial (Hutchinson and Gallant,
Chapter 9; Weibel and Dutton, Chapter 10; Weibel
and Heller 1991). Extension to d-dimensional

problems is more complex than for the distance-
based methods (Nielson 1993).

While a TIN provides an effective representation
of surfaces useful for various applications, such as
dynamic visualisation and visibility analyses
(De Floriani and Magillo, Chapter 38), interpolation
based on a TIN, especially the simplest, most
common linear version, belongs among the least
accurate methods (Franke 1982a; Nielson 1993;
Renka and Cline 1984).

3.1.4 Rectangle-based methods
These are analogons to a TIN and involve fitting
blended polynomial functions to regular or irregular
rectangles, such as Hermite, Bezier, or B-spline patches
(Chui 1988; Watson 1992), often with locally tunable
tension. These methods were developed for computer-
aided design and computer graphics and are not very
common in GIS applications.

3.2 The geostatistical approach

The principles of geostatistics and interpolation by
Kriging are described in a large body of literature
(e.g. Burrough 1986; Cressie 1993; Deutsch and
Journel 1992; Isaaks and Srivastava 1989; Journel
and Huijbregts 1978; Matheron 1971; Oliver and
Webster 1990); therefore only the basic notions are
outlined here.

Kriging is based on a concept of random
functions: the surface or volume is assumed to be
one realisation of a random function with a certain
spatial covariance (Journel and Huijbregts 1978;
Matheron 1971). Using the given data z(ri) and an
assumption of stationarity one can estimate a
semivariogram γ(h) defined as

1 1
Nh

γ (h) =  2 Var [{ z(r + h) – z(r)}] ≈ (2Nh ) ∑ [z(ri) – z(rj)]
2 (3)

(ij) 

which is related to the spatial covariance C(h) as

γ(h)= C(0) – C(h) (4)

where C(0) is the semivariogram value at infinity
(sill). The summation in Equation (3) runs over the
number Nh of pairs of points which are separated by
the vector h within a small tolerance !h (size of a
histogram bin). For isotropic data, the
semivariogram can be simplified into a radial
function dependent on |h|. The Kriging literature
provides a choice of functions which can be used as
theoretical semivariograms (spherical, exponential,
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Gaussian, Bessel etc.: Cressie 1993). The parameters
of these functions are then optimised for the best fit
of the experimental semivariogram.

The interpolated surface is then constructed using
statistical conditions of unbiasedness and minimum
variance. In its dual form (Hutchinson and Gessler
1993; Matheron 1971) the universal Kriging
interpolation function can be written as 

N
F(r) = T(r) + ∑ λj C(r – rj) (5)

j=1

where T(r) represents its non-random component
(drift) expressed as a linear combination of low-
order monomials. The monomial and {λj}
coefficients are found by solving a system of linear
equations (Hutchinson and Gessler 1993).

In general, Kriging predicts values at points and
blocks in d-dimensional space and enables
incorporation of anisotropy. Various extensions
enhance its flexibility and range of applicability
(Cressie 1993; Deutsch and Journel 1992).
Co-Kriging includes information about correlations
of two or more attributes to improve the quality of
interpolation (Myers 1984), while disjunctive
Kriging is used for applications where the
probability that the measured values exceed a certain
threshold is of interest (Rivoirard 1994). For cases in
which the assumption of stationarity is deemed not
to be valid, zonal Kriging can be used (Burrough
1986; Wingle and Poeter 1996). Approaches for
spatio-temporal Kriging reflect the different
behaviour of the modelled phenomenon in the time
dimension. Time is treated either as an additional
dimension with geometric or zonal anisotropy, or as
a combination of the space and time correlation
functions with a space-time stationarity hypothesis
(Bogaert 1996; Rouhani and Myers 1990).

Recent applications of geostatistics have
de-emphasised the use of Kriging as an
interpolation and mapping tool while shifting the
focus towards models of uncertainty that depend on
the data values in addition to the data configuration
(Armstrong and Dowd 1993; Deutsch and Journel
1992; Englund 1993; Journel 1996; Rogowski 1996;
Yarrington 1996). A stochastic technique of
conditional simulation is used to generate
alternative, equally probable realisations of a
surface, reproducing both data and the estimated
covariance. From such a set of statistical samples
one can estimate a spatially-dependent picture of the
uncertainty which is inherent in the data.

The main strengths of Kriging are in the
statistical quality of its predictions (e.g.
unbiasedness) and in the ability to predict the spatial
distribution of uncertainty. It is often used in the
mining and petroleum industries, geochemistry,
geology, soil science and ecology, where its statistical
properties are of great value (Burrough 1991; Cressie
1993; Isaaks and Srivastava 1989; Oliver and
Webster 1990). It has been less successful for
applications where local geometry and smoothness
are the key issues and other methods prove to be
competitive or even better (Deutsch and Journel
1992; Hardy 1990).

3.3 The variational approach

The variational approach to interpolation and
approximation is based on the assumption that the
interpolation function should pass through (or close
to) the data points and, at the same time, should be
as smooth as possible. These two requirements are
combined into a single condition of minimising the
sum of the deviations from the measured points and
the smoothness seminorm of the spline function:

N
∑ |zj – F(rj)|

2 wj + w0I(F) = minimum (6)
j=1

where wj, w0 are positive weights and I(F) denotes
the smoothness seminorm (Table 1). The solution of
Equation (6) can be expressed as a sum of two
components (Talmi and Gilat 1977; Wahba 1990):

N
F(r) = T(r) + ∑ λj R(r, rj) (7)

j=1

where T(r) is a ‘trend’ function and R(r, rj) is a basis
function which has a form dependent on the choice
of I(F). A bivariate smoothness seminorm with
squares of second derivatives (Table 1) leads to a
thin plate spline (TPS) function (Duchon 1976;
Harder and Desmarais 1972). The TPS function
minimises the surface curvature and imitates a steel
sheet forced to pass through the data points: the
equilibrium shape of the sheet minimises the
bending energy which is closely related to the surface
curvature. There are at least two deficiencies of the
TPS function: (1) the plate stiffness causes the
function to overshoot in regions where data create
large gradients; and (2) the second order derivatives
diverge in the data points, causing difficulties in
surface geometry analysis.
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The problem of overshoots can be eliminated by
adding the first order derivatives into the seminorm
I(F), leading to a TPS with tension (Franke 1985;
Hutchinson 1989; Mitas and Mitasova 1988).
Change of the tension tunes the surface from a stiff
plate into an elastic membrane (Plate 30 (a), (b), and
(c); Mitas et al 1997). In the limit of an infinite
tension the surface resembles a rubber sheet with
cusps at the data points. The analytical properties of
TPS can be improved by adding higher order
derivatives into I(F), leading to a function with
regular second- and possibly higher-order derivatives
(Mitas and Mitasova 1988).

To synthesise the desired properties into a single
function the regularised spline with tension (RST)
was proposed and implemented within a GIS
(Mitasova et al 1995). The RST function includes
the sum of all derivatives up to infinity with rapidly
decreasing weights. The resulting surface is of C∞

class which means that it has regular derivatives of
all orders (similar, for example, to a Gaussian) and
therefore is suitable for differential analysis and
calculations of curvatures (Mitasova and Hofierka
1993; Mitasova et al 1995). Other forms of
smoothness seminorm are also possible (e.g. Mitas
and Mitasova 1997; Wahba 1990). It is important to
note that the splines described in this section are, in
general, different from a rich class of piecewise
polynomial splines (Chui 1988; Wahba 1990).

RST can be generalised to an arbitrary dimension
and the corresponding d-variate formula for the
basis function is given by

Rd(r, rj) = Rd(|r – rj|) = Rd(r) = ρ−δγ (δ, ρ) – (1–δ)       (8)

where r = |r – rj|, δ = (d – 2) / 2, and ρ = (ϕ r / 2)2.

Further, ϕ is a generalised tension parameter, and
γ(δ,ρ) is the incomplete gamma function, not to be
confused with a semivariogram (Abramowitz and
Stegun 1964). The somewhat less obvious case for
d = 2 is given by 

R2(r)= lim [ ρ−δγ (δ,ρ) – (1–δ )] = – [E1(ρ) + ln ρ + CE] (9)
d→0

where CE=0.577215... is the Euler constant and E1(.)
is the exponential integral function (Abramowitz
and Stegun 1964).

As has been pointed out by several authors
(Cressie 1993; Hutchinson and Gessler 1993;
Matheron 1981; Wahba 1990), splines are formally
equivalent to universal Kriging with the choice of
the covariance function determined by the seminorm
I(F). Therefore, many of the geostatistical concepts
can be exploited within the spline framework.
However, the physical interpretation of splines
makes their application easier and more intuitive.
The ‘thin plate with tension’ analogy helps to
understand the behaviour of the function also in
higher dimensions where the interpolation function
models an elastic medium with a tunable tension
(Mitas et al 1997; see Plate 30). The RST control
parameters such as the tension ϕ and smoothing
weights {wj} proved to be useful and effective for
preventing an introduction of artificial features such
as waves along contours, artificial peaks, pits or
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Table 1  Examples of bivariate spline functions, their corresponding smoothness seminorms and 
Euler–Lagrange equations.

Method I(F) Euler–Lagrange Eq.

Membrane ∫ [F x
2 + F y

2] dr harmonic

Minimum curvaturea ∫ [F xx
2 + F yy

2 ] dr biharmonic modified

Thin plate splineb ∫ [F xx
2 + F yy

2 + 2F xy
2 ] dr biharmonic

Thin plate spline+tensionc ∫ [ϕ2 [F x
2 + F y

2] + [F xx
2 + ...] dr harmonic+biharmonic

Regular thin plate splinec ∫ [F xx
2 + ...] + τ2[F xxx

2 + ...] dr biharmonic+6th-order

Regular spline with tensiond ∑mn cmn(ϕ)∫ [Fx
n
y
m]2 dr all even orders

a Briggs 1974, Duchon 1975, Hutchinson and Bischof 1983, Wahba 1990
b Franke 1985, Hutchinson 1989
c Mitas and Mitasova 1988
d Mitasova et al 1995; Mitas and Mitasova 1997



overshoots, often found in the results of less general
interpolation techniques, or in spline surfaces with
tension set too high (for examples of waves, peaks,
and pits: see Plate 26(e) and 29(b)), or too low
(overshoots, see Plate 30(c) and (d)) (Mitas et al
1997; Mitasova and Mitas 1993; Mitasova et al
1995; Mitasova et al 1996; Watson 1992). The
tension and smoothing parameters can be selected
empirically, based on the knowledge of the modelled
phenomenon, or automatically by minimisation of
the predictive error estimated by a cross-validation
procedure (Mitasova et al 1995). Moreover, the
tension parameter ϕ can be generalised to a tensor
which enables modelling of anisotropy (Mitas and
Mitasova 1997; Mitasova and Mitas 1993).

The interpolation function given by Equation (7)
requires solving a system of N linear equations.
Therefore processing of large datasets (N > 103)
becomes computationally intractable, as the
computer time scales as N3. Treatment of large
datasets is enabled by implementation of an
automatic segmentation procedure proposed in
various forms (Franke 1982b; Hardy 1990; Mitas and
Mitasova 1988; Mitasova and Mitas 1993; Mitasova
et al 1995) with computational demands proportional
to N. The segmented processing is based on the fact
that splines have local behaviour, that is, the impact of
data points which are far from a given location
diminishes rapidly with increasing distance
(Powell 1992). The segmentation uses a
decomposition of the studied region into rectangular
segments with variable size dependent on the density
of data points (Plate 28), using 2d-trees (Mitasova et
al 1995). For a given segment, the interpolation is
carried out using the data points within this segment
and from its neighbourhood, selected automatically
depending on their spatial distribution. For very low
tension, this approach requires large neighbourhoods
to achieve smooth connection of segments, which
makes the segmentation method less efficient for flat,
very smooth surfaces with strongly heterogeneous
point distributions. Recently, a new, more robust
version of RST has been developed which reduces the
influence of higher order derivatives and the need for
large segment neighbourhoods even for low values of
tension (Mitas and Mitasova 1997). Segmentation has
allowed users to apply RST to datasets with over a
million data points and to interpolate multi-million
grid sizes (e.g. Hargrove et al 1995).

Instead of using the explicit solution (7), the
minimisation in Equation (6) can be carried out
numerically by solving an Euler–Lagrange differential

equation corresponding to a given functional (Briggs
1974), for example, by using a finite difference
multi-grid iteration method (Hutchinson 1989).

The variational approach offers a wide range of
possibilities to incorporate additional conditions
such as value constraints, prescribed derivatives at
the given or at arbitrary points, and integral
constraints (Talmi and Gilat 1977; Wahba 1990).
Incorporation of dependence on additional
variables, analogous to co-Kriging, leads to partial
splines (Hutchinson 1996; Wahba 1990). Numerical
solution enables the incorporation of stream
enforcement and other topographic features
(Hutchinson 1989). Known faults or discontinuities
can be handled through appropriate data structures
using masking and several independent spline
functions (Cox et al 1994). A similar approach can
be used to handle regions with spatially variable
tension, with blending along their borders, an
approach analogous to zonal Kriging. Spatio-
temporal interpolation is performed by employing
an appropriate anisotropic tension in the temporal
dimension (Mitas et al 1997; Mitasova et al 1995).

The spline methods are often used for terrain and
bathymetry (Hutchinson and Gallant, Chapter 9;
Hargrove et al 1995; Mitasova and Mitas 1993),
climatic data (Hutchinson 1996; Hutchinson and
Bischof 1983; Wahba 1990), chemical
concentrations and soil properties (McCauley and
Engel 1997; Mitasova et al 1995), and most recently
also for image rectification (Fogel 1996).

While not obtained by a variational approach,
similar in formulation and performance are
multiquadrics (Fogel 1996; Foley 1987; Franke 1982a;
Hardy 1990; Kansa and Carlson 1992; Nielson 1993)
with Rd (r) = (r2 + b)1/ 2 or Rd (r) = (r2 + b)–1/ 2,
offering high accuracy, differentiability, d-dimensional
formulation, and, with segmentation, applicability to
large datasets. Originally ad hoc multiquadrics were
later put on more solid theoretical ground. Good
performance of multiquadrics, especially in three
dimensions, is not surprising, considering that for
d = 3 in the limit of b → 0 the basis functions
(r2 + b)1/ 2 and (r2 + b)-1/ 2 are solutions of biharmonic
and harmonic equations respectively (Hardy 1990).

3.4 Relationships and differences between the
geostatistical and variational approaches

Theoretical and practical issues of the relationship
between Kriging and splines have been discussed in
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several papers (e.g. Cressie 1993; Dubrule 1984;
Hutchinson and Gessler 1993; Laslett et al 1987;
Matheron 1981; Wahba 1990); therefore only a brief
comment is presented here.

Kriging assumes that the spatial distribution of a
geographical phenomenon can be modelled by a
realisation of a random function and uses statistical
techniques to analyse the data (drift, covariance)
and statistical criteria (unbiasedness, minimum
variance) for predictions. However, subjective
decisions are necessary (Journel 1996) such as
judgement about stationarity, choice of function for
theoretical variogram, etc. In addition, often the
data simply lack information about important
features of the modelled phenomenon, such as
surface analytical properties or physically acceptable
local geometries. As mentioned earlier, Kriging is the
most successful for phenomena with a very strong
random component or for estimation of statistical
characteristics (uncertainty).

Splines rely on a physical model with flexibility
provided by change of elastic properties of the
interpolation function. Often, physical phenomena
result from processes which minimise energy, with a
typical example of terrain with its balance between
gravitation force, soil cohesion, and impact of
climate. For these cases, splines have proven to be
rather successful. Moreover, splines provide enough
flexibility for local geometry analysis which is often
used as input to various process-based models.

However, most of the surfaces or volumes are
neither stochastic nor elastic media, but are the
result of a host of natural (e.g. fluxes, diffusion) or
socioeconomic processes. Therefore, each of the
mentioned methods has a limited realm of
applicability and, depending on the knowledge and
experience of the user, proper choice of the method
and its parameters can significantly improve the final
results. This will be illustrated to some extent in
section 4.2 with applications.

3.5 Application-specific methods

There is a large class of methods specially designed
for certain applications which use one of the above-
mentioned general principles, but they are modified
to meet some application-specific conditions. These
methods are too numerous to mention, so only a few
examples with references related to GIS applications
have been selected.

Area to surface interpolations are designed to
transform the data assigned to areas (polygons) to a
continuous surface, represented by a high-resolution
raster. This task is common in socioeconomic
applications, for example for transformation of
population density data from census units to a
raster, while preserving the value for an area (mass
preservation condition), and ensuring smooth
transition between the area units (Martin,
Chapter 6; Dyn and Wahba 1982; Goodchild and
Lam 1980; Goodchild et al 1993; Moxey and
Allanson 1994; Tobler 1979, 1996).

Voronoi polygons (Boots, Chapter 36) are
sometimes used for transformation of qualitative
point data to polygons or a raster when the condition
of continuity is not appropriate, resulting in a surface
with zero gradients and faults (see Plate 26(a)).

Interpolations on sphere are modifications of the
methods described in sections 3.1–3.3 for data given
in spherical (latitude/longitude) coordinates. The
interpolation functions are dependent on angle
rather than on distance (Nielson 1993; Tobler 1996;
Wahba 1990). These methods are used for
applications covering large areas, such as continental
and global Earth or other planets datasets.

Contour/isoline data interpolations are
modifications of mostly local methods specifically
designed to handle isoline data (Auerbach and
Schaeben 1990; Weibel and Heller 1991).
Modification of splines for contour data
(Hutchinson 1989) supports incorporation of
topographic features, such as streams and ridges, to
improve the quality of the resulting Digital Elevation
Model (DEM: Hutchinson and Gallant, Chapter 9).

Raster data resampling and smoothing can be
performed by modifications of methods described in
sections 3.1–3.3, with increased efficiency achieved
by taking advantage of data regularity. Numerous
simpler methods are also available, such as bilinear
and local least square polynomial functions.

4 GIS APPLICATIONS OF SPATIAL
INTERPOLATION

Spatial interpolation is an important component of
almost any GIS. While the basic bivariate methods
are common, implementation of multivariate tools is
restricted to the most advanced systems, because of
the lack of data structures and supporting tools for
multivariate and temporal data processing and
analysis (Peuquet, Chapter 8). In spite of recent
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advances in the development of methods and
algorithms and an exponential increase in
computational power, spatial interpolation,
especially for large and complex datasets, can still be
an iterative, time-consuming task, requiring an
adequate knowledge of underlying methods and
their implementation.

4.1 Integration of spatial interpolation within a GIS

Depending on application, spatial interpolation can
be performed at three levels of integration with a
GIS: (1) within a more general program/command;
(2) as a specialised command; or (3) using linkage to
specialised software.

Interpolation integrated at a ‘sub-command’ level
can be found in many GIS application programs, such
as computation of slope and aspect, automatic raster
resampling, flow-tracing, hydrological modelling, etc.
Mostly simple and fast local interpolations such as
IDW, bilinear, or local polynomial methods are used
in this case. The interpolation is fully automatic,
hidden from the user, and while it is sufficient for
most applications, it can result in artefacts in surfaces
if an improper method is implemented.

Interpolations integrated at a command level
serve as data transformation functions. A limited set
of basic and some advanced methods have been
integrated within GIS, most often the simpler
versions of IDW, TIN, Kriging and splines.
Compromises in numerical efficiency, accuracy, and
robustness are common and upgrades to improved
modifications of methods are slow, especially for
commercial systems. Therefore, it is necessary to
evaluate the results carefully and, if possible, to use
more than one independent interpolation procedure.

Although interpolations performed by specialised
software linked to a GIS provide the most advanced
and flexible tools, a time-consuming import/export
of data, or inconvenient work in a different software
environment might be necessary. This approach still
can be preferable, especially when data are complex
and high accuracy is required. The advanced surface
and volume modelling systems with strong
interpolation capabilities often also provide some
basic spatial data processing, analysis, and graphical
tools, thus evolving into specialised GIS.

4.2 Examples of applications 

To illustrate the properties of selected interpolation
methods as well as their typical GIS applications, a

few representative examples and corresponding
references are presented. Data were processed by
GRASS, ARC/INFO and S-PLUS, and the
illustrations were created by SG3d, SG4d and Nviz
visualisation programs (Brown et al 1995).

4.2.1 Bivariate interpolation of elevation data
The character of interpolation methods from the
simple to the more elaborate ones available in most
GIS is illustrated by a common task of interpolation
from scattered point elevation data to a raster with
2 m resolution, for an area of approximately 1 km2.
Voronoi polygons (Plate 26(a)), producing a surface
with discontinuities, are used to illustrate a relatively
homogeneous spatial distribution of the original
data. Linear TIN-based interpolation (Plate 26(b))
produces a surface with a typical triangular structure
and inadequate description of smaller valleys
(triangles creating ‘dam’ structures across valleys).
Application of a non-linear TIN-based method to
this dataset resulted in unacceptable overshoots
within the triangles. Results of IDW (Plate 26(c))
show a typical pattern with extrema in given points
and artificial roughness biased towards the data
points. Results of Kriging (Plate 26(d)) and a TPS
with tension and stream enforcement (Plate 26(e))
represent a significant improvement; however, subtle
discontinuities in Kriging (Plate 26(d)) and small
cusps in the data points for both methods are visible
at this resolution, although the artefacts are within
the data accuracy. The results can be further
improved by properly tuning the tension and
smoothing, as illustrated by the application of the
RST method (Plate 26(f)).

4.2.2 The role of interpolation in modelling 
To highlight the impact of subtle interpolation
artefacts on the results of a model, an
erosion/deposition model (Mitasova et al 1996) was
used with DEMs computed from contours (Plate 27(a)
white lines) using splines with tension and stream
enforcement (Plate 27(b)) and by the RST (Plate 27(c)),
and compared with observed depositional areas. Small
distortions in the DEM computed by splines with
tension set too high lead to an artificial pattern of
erosion/deposition biased towards the given contours
(Plate 27(b)), because the model is dependent on the
highly sensitive surface curvatures.

4.2.3 Interpolation of a large dataset 
RST method was used to interpolate a 50 m DEM
(400x700 grid) from approximately half a million 
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data points digitised from a contour map of Santa
Cruz island in California (Plate 28). A segmentation
procedure (Plate 28 inset) was used to make the RST
method applicable to a large dataset. The example
also illustrates that splines can realistically represent
rough surfaces in spite of the smoothness condition,
if the roughness is sufficiently described by the input
data (Plate 28 inset).

4.2.4 Bivariate and trivariate interpolation of precipitation
Multi-dimensional interpolation is also a valuable
tool for incorporating the influence of an additional
variable into interpolation, for example for evaluation
of precipitation with the influence of topography.
Plates 29(a) and (b) illustrate the difference between
bivariate spline interpolation of annual precipitation
in tropical South America, and interpolation with the
influence of topography. The importance of
incorporating the terrain data is visible especially in
the mountainous areas, where the barrier effect of the
Andes is very well represented in the results of
trivariate interpolation (Plate 29(b)).

4.2.5 Multi-variate interpolation of scattered spatio-
temporal data 

Capabilities of RST to model spatial and spatio-
temporal distributions of phenomena measured in
points scattered in 3-dimensional space and time are
illustrated by interpolation of nitrogen concentrations
in Chesapeake Bay and their change over the year. The
analogy between the tensions for bivariate and
trivariate interpolation is illustrated by surfaces and
volumes interpolated with increasing tension, changing
the surface from a stiff medium with overshoots,
through adequate tension, to a highly elastic medium
with extrema in data points (Plates 31(a)–(f)).
Spatio-temporal interpolation was performed by a
quadvariate RST function with time as a fourth
independent variable. Anisotropic tension in the third
(depth) and fourth (time) dimensions was used to
ensure a stable solution, and the appropriate tension
and smoothing parameters were found by minimising
the cross-validation error. The resulting time series of
3-dimensional rasters (Mitasova et al 1995) was then
animated to present the dynamic character of the
modelled phenomenon (Plate 30 presents a snapshot;
Mitas et al 1997 provide animation).

4.3 Future directions 

The following paragraphs identify the tasks
considered to be the most important in the future
development of spatial interpolation techniques.

4.3.1  Robustness and fully automatic method/parameters 
selection

For widespread, routine use of GIS by users with little
expertise in spatial data processing, fully automatic
selection of interpolation methods and their
parameters based on the robust analysis of given data
or a priori information about the modelled
phenomenon is crucial. With the fast development of
communication technologies and accessibility of a
variety of data in different formats, this is becoming
one of the most urgent tasks for practical applications.

4.3.2  Increase in accuracy and realism 
Improvements in accuracy and realism can be
expected by employing spatially-variable adaptive
interpolation (Hutchinson 1996; Kansa and Carlson
1992) and by further developments in model-based
interpolation. More information can be extracted
from field data by using process-based models to
extrapolate scattered field observations over both
time and space (McLaughlin et al 1993). When field
data are combined with model predictions the
resulting estimates are able to capture the unique
characteristics of a specific area while respecting the
general physical principles that control the process
influencing the spatial distribution of the studied
phenomenon. This can be accomplished by using a
stochastic/deterministic model of a process together
with the concepts of Bayesian estimation theory.

4.3.3  Synthesis of data from various sources
One of the important developments in geosciences is
the increasing availability of data generated by
various sources (e.g. local measurements, GPS,
satellites, radar) which have diverse character from the
point of view of resolution, accuracy, distribution etc.
This requires novel approaches to data processing and
synthesis so that the extraction of information from
all sources of data is properly weighted and optimised
(Goodchild and Longley, Chapter 40).

4.3.4  Multi-scale modelling
Currently, new types of simulation methods are
being developed which span several spatial or spatio-
temporal scales. Such approaches provide new
challenges for interpolation focused on the design of
a versatile and robust approach applicable across the
range of scales. Recent progress in wavelet
techniques offers one possibility as scale flexibility is
one of the fundamental properties of wavelet
construction. However, its potential for general
multivariate applications remains to be investigated.
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4.3.5  Multi-dimensional representation
Full integration of support for multi-dimensional
data, including data structures, analytical, and
visualisation tools will stimulate multivariate
applications. Although methods have been presented
already which are fully capable of treatment of
multi-dimensional data, the current GIS
computational infrastructure does not effectively
support wide application of multi-dimensional and
spatio-temporal modelling.

4.3.6  Computational efficiency
High-accuracy interpolation of large datasets is
computationally very intensive, and increase in
performance is important for both large cutting-edge
applications, as well as for routine use. Further
development of algorithms and the use of parallel
architectures will be one of the options for speeding
up calculations.

5 CONCLUSION

This chapter has presented a review of scattered-
data spatial interpolation methods which are
relevant for GIS applications. It is obvious that there
has been substantial development over the past
decade from the points of view of accuracy,
multivariate frameworks, robustness, variety of
applications, and size of problems tackled.

However, the conclusions outlined by Burrough
(1986) are still valid: ‘It is unwise to throw one’s data
into the first available interpolation technique without
carefully considering how the results will be affected
by the assumptions inherent in the method. A good
GIS should include a range of interpolation
techniques that allow the user to choose the most
appropriate method for the job at hand.’ Computers
will take over a large part of this nontrivial task, but
many problems remain to be resolved.
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