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Abstract
Regularized Spline with Tension (RST) is an accurate, flexible and efficient method
for multivariate interpolation of scattered data. This study evaluates its capabilities
to interpolate daily and annual mean precipitation in regions with complex terrain.
Tension, smoothing and anisotropy parameters are optimized using the cross-
validation technique. In addition, smoothing and rescaling of the third variable
(elevation) is used to minimize the predictive error. The approach is applied to data
sets from Switzerland and Slovakia and interpolation accuracy is compared to the
results obtained by several other methods, expert-drawn maps and measured runoff.
The results demonstrate that RST performs as well or better than the methods
tested in the literature. The incorporation of terrain improves the spatial model of
precipitation in terms of its predictive error, spatial pattern and water balance.

1 Introduction

Spatially distributed measurements of precipitation have gained renewed interest in
connection with climate-change impact studies, determination of water budgets at
different temporal and spatial scales, as well as validation of atmospheric and hydrologic
models. Precipitation values are usually available from a limited number of meteoro-
logical stations and spatial estimates of precipitation fields are obtained by interpolation
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techniques. Mountainous environments pose a special challenge to spatial interpolation
because the measured data are sparse, often restricted to lower elevations while spatial
variability in precipitation can be substantial. Various approaches were therefore
developed to improve the interpolation results by incorporation of the impact of
topography, for example, MTCLIM (Running et al. 1987, Thornton et al. 1997), PRISM
(Daly et al. 1994), ANUSPLIN (Hutchinson and Bischof 1983, Hutchinson 1995).

Tabios and Salas (1985) evaluated several techniques for interpolation of
precipitation and concluded that geostatistical methods were superior to Thiessen
polygon, polynomial interpolation and inverse-distance weighting methods. Custer et
al. (1996) compared ANUSPLIN (Hutchinson 1995) with an expert-drawn precipitation
map for Montana and found that both maps were similar, with over 50% cells identical;
however, the two maps differed in areas of the lowest and the highest elevation and the
ANUSPLIN-generated map had richer spatial pattern, due to the selection of a relatively
high digital elevation model (DEM) resolution. The Spatial Interpolation Comparison
97 (SIC 97, Dubois 1998) compared the results of interpolation of daily precipitation
data for Switzerland obtained by more than 20 different methods, including Inverse
Distance Weighting, Kriging, Radial Basis Functions (Multiquadrics and Splines),
Neural Networks, Fuzzy Logic Interpolators and others (Dubois 1998). The estimates
with the lowest RMSE were obtained by multiquadric functions with anisotropy and the
study has demonstrated that performing a geostatistical analysis of data is helpful for
selecting an appropriate interpolation method and its parameters. Incorporation of
topography in this study did not lead to improved results for the tested methods. Parajka
(1999) compared kriging and co-kriging methods with respect to an expert-drawn
precipitation map. The cross-validation analysis in this study has shown that kriging
estimates provided reasonable results in regions with sufficiently dense observations,
but in mountainous regions with sparse data it did not reflect the impact of
topographical patterns. The co-kriging method, which included the effect of
topography, provided more accurate and realistic estimates.

One of the spline interpolation functions, which has not been included in the
previous studies, but which has performed very well in other applications is the
Regularized Spline with Tension (RST) (see Mitasova and Mitas 1993, McCauley and
Engel 1995, Rohling et al. 1998 for examples). Its application to interpolation of
precipitation with incorporation of topography was demonstrated for a sample data set
from South America (Mitasova et al. 1995), indicating that this method can be a
suitable choice for effective interpolation of precipitation in a region with significant
variability in terrain. The method is relatively simple to use, does not require
regionalization of data and its implementation in GRASS5 (GRASS 2002) makes its use
efficient for GIS applications. Because it does not depend on prior climatologically
extracted covariances it can better adapt to seasonal changes in windward/leeward
slopes as well as to the occurrence of both positive and negative relationships between
precipitation and elevation in the study area.

Our study aims to advance the development of methodology for interpolation of
precipitation in mountainous regions within a general GIS, based on multivariate RST
with optimized parameters. We investigate the impact of parameters and incorporation
of the third variable (elevation) on the predictive error of interpolation and compare
the results for daily and annual mean precipitation with other methods, an expert
drawn map and measured runoff. Based on the results of comprehensive testing, we
suggest an effective strategy for this type of application.
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2 Multivariate Interpolation by Regularized Spline with Tension

The RST method has been described by Mitasova and Mitas (1993) (an earlier version
called Completely Regularized Spline) and Mitasova et al. (1995) (the general d-
dimensional formulation with applications for 2D, 3D, and 4D data). We briefly recall
the basic principles of the method and then focus on issues of selection of parameters
important for interpolation of precipitation data.

2.1 Basic Principles and Radial Basis Functions

In general, a spline function S(x) fulfills the condition of minimizing the deviation from
the measured points and at the same time its smoothness seminorm I�S� (e.g. Wahba
1990):

XN
j�1
jp�j� ÿ S�x�j��j2wj �w0I�S� � minimum �1�

where p�j� are the values measured at discrete points x�j� � �x�j�1 ; x�j�2 ; :::x�j�d �; j � 1; :::;N
within a region of a d-dimensional space, wj;w0 are positive weighting factors and I�S�
is the measure of smoothness (smooth seminorm or roughness penalty). For w0=wj � 0
the function S(x) passes exactly through the data. The general solution of the
minimization problem given by equation (1) can be expressed as a sum of two
components (Talmi and Gilat 1977)

S�x� � T�x� �
XN
j�1

�jR�x; x�j�� �2�

where T(x) is a `trend' function and R(x, x[j]) is a radial basis function with an explicit
form depending on the choice of the I�S�. The smoothness seminorm I�S� for the RST
method has been designed to synthesize in a single function properties of several
previously known splines, such as the Thin Plate Spline (Duchon 1976), the Thin Plate
Spline with Tension (Franke 1985, Mitas and Mitasova 1988), and the Regularized
Thin Plate Spline (Mitas and Mitasova 1988). These desired properties include an
explicit form, multi-variate formulation, smooth derivatives of higher orders,
variational freedom through tension, and anisotropy.

The seminorm that fulfills these requirements includes derivatives of all orders
with weights rapidly decreasing with the increasing derivative order. For d � 2 it has
the following form:
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where ' is a relative reciprocal weight of particular terms in the sum (generalized
tension) which provides the control over the influence of derivatives of certain order on
the resulting function. With this particular choice of coefficients, the RST functions
have the following explicit form for d � 2; 3 (Mitasova et al. 1995)

S�x� � a1 �
XN
j�1

�jfÿ�E1��� � ln�� CE�g; d � 2 �5�

S�x� � a1 �
XN
j�1

�j

���
�

�

r
erf� ����p � ÿ 2

� �
; d � 3 �6�

where � � �'r=2�2; r2 �Pd
i�1�xi ÿ x

�j�
i �2 is the squared distance, CE � 0:577215:: is the

Euler constant, E1�:� is the exponential integral function and erf(.) is the error function
(Abramowitz and Stegun 1964). The coefficients a1; f�jg are obtained by solving the
following system of linear equations

a1 �
XN
j�1

�j�R�x�i�; x�j�� � �jiwo=wj� � z�i�; i � 1; :::;N �7�

XN
j�1

�j � 0 �8�

where w � w0=wj is the smoothing parameter. Computational demands due to the
solution of this system have been cited as a major limitation for application of this type
of splines; however, the problem has been satisfactorily resolved by a segmentation
procedure implemented in the GRASS version of the RST, s.surf.rst (GRASS 2002). This
program has been routinely used to interpolate data sets with hundreds of thousands of
points (e.g. Gardner et al. 1994, Mitasova et al. 1995, Mitas and Mitasova 1999).

The RST method is related to the bivariate and trivariate spline methods
implemented in ANUSPLIN (Hutchinson 1998a, b). It is based on the same general
condition given by equation (1); however, ANUSPLIN uses a different smoothness
seminorm I�S� leading to a different behavior of the interpolation function.

2.2 Anisotropy

Spatial distribution of precipitation is often driven by wind orientation and topography
that may result in an anisotropic spatial pattern. Using the fact, that for the RST
function, the change of scale is equivalent to the change in the tension parameter,
anisotropy can be implemented by rotating the coordinate system by an angle �
(direction of anisotropy) and then rescaling one axis according to the anisotropy
magnitude. For d � 2, the transformation from original coordinates x� �x1; x2� to new
coordinates x0 � �x01; x02� is simply

x01 � x1cos��� � x2sin��� �9�
x02 � ÿx1sin��� � x2cos��� �10�
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and the distances are then computed as

r2 � s�x1 ÿ x
�j�
1 �2 � �x2 ÿ x

�j�
2 �2 �11�

where s � s1=s2 is a scaling coefficient expressed here as a ratio between the scaling in
the x01 and x02 axis respectively. The rotated and rescaled distances are then used in the
solution of equations (7) and (8) as well as for the computation of interpolated values
at the grid points. The direction and scaling of the anisotropy can be found using
standard geostatistical tools, for example, GSLIB (Deutsch and Journel 1992) or
VARIOWIN (Pannatier 1996). The generalization of the coordinate transformation for
d � 3 is straightforward.

2.3 Interpolation with Influence of Additional Variable

To interpolate precipitation with the influence of topography an approach similar to
the one proposed by Hutchinson and Bischof (1983) can be used. Given the N values of
precipitation p�j� measured at discrete points, x�j� � �x�j�1 ; x�j�2 ; x�j�3 �; j � 1; :::;N within a
certain region of a 3-dimensional space we compute a function p � F�x1; x2�
representing the spatial distribution of precipitation over the terrain surface
x3 � G�x1; x2� as

p � F�x1; x2� � S�x1; x2; cG�x1; x2�� �12�
where c is a vertical rescaling parameter, and S(.) is the trivariate RST function.
Equation (12) can be interpreted as an intersection of the RST volume model of
precipitation with the terrain surface. This approach thus captures a more complex,
spatially and temporally variable relation between precipitation and elevation than the
traditional methods based on statistical correlation.

2.4 Control parameters

One of the advantages of the RST method is its flexibility within the single radial basis
function, as opposed to the often subjective task of selecting a suitable variogram in
kriging. To reflect the behavior of modeled phenomenon, the function can be tuned by
a set of the following parameters:

• tension ',
• smoothing w,
• anisotropy: rotation and scale (�; s),
• vertical scaling c,
• resolution and smoothing of DEM.

The tension ', smoothing w, anisotropy (�; s), and vertical scaling c are internal RST
parameters and control the character of the resulting surface or volume (Mitas and
Mitasova 1999). The resolution and smoothing of the DEM influences the spatial
variability of the ``intersection'' surface x3 � G�x1; x2� and hence the spatial variability
of the resulting precipitation map p � F�x1; x2�. The parameters can be selected
empirically, based on the knowledge of the modeled phenomenon, or automatically, by
minimization of the predictive error estimated by a cross-validation procedure
(Mitasova et al. 1995).
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2.5 Evaluation of Accuracy

The predictive accuracy of interpolation methods is often evaluated by the cross-
validation procedure. The method is based on removing one data point at a time,
performing the interpolation for the location of the removed point using the remaining
samples and calculating the residual between the actual value of the removed data
point and the estimate for this point obtained from the remaining samples. This
procedure is repeated until every sample has been, in turn, removed. The overall
performance of the interpolator is then evaluated as the root-mean of squared residuals
(Tomczak 1998). Low root-mean-squared error (RMSE) indicates an interpolator that
is likely to give more reliable estimates in the areas with no precipitation data. The
cross-validation can be used to find optimal interpolation parameters by minimizing
the RMSE (Mitasova et al. 1995). However, Hutchinson (1998a) found that the cross-
validation does not always represent a reliable estimate of model error, especially when
short range correlation in data is present. To evaluate the reliability and consistency of
the predictions, it is therefore appropriate to use additional evaluation methods or
tools.

Comparison with expert hand-drawn precipitation maps (e.g. Custer et al. 1996,
Parajka 1999) and maps of derived hydrological processes can provide some insight
into the capabilities of the interpolation method to adequately represent the behavior
of modeled phenomenon including the features which may not be directly incorporated
in the data. Annual mean precipitation, evapotranspiration, and elementary runoff can
be represented by continuous fields. Besides continuity, these phenomena must fulfill
balancing constraints (i.e. the hydrologic water balance) and other laws (vertical and
horizontal geographical zonality, relationships to other spatial physiographic
variables). Sometimes this complexity of interrelations is used as an argument against
automated mapping approaches, especially in areas with insufficient density of
observations (Gottschalk and Krasovskaia 1998). The manually drawn maps include
the expert's local knowledge and experience (Parajka and Szolgay 1998) that may be
difficult to obtain from the data themselves, especially if the data are sparse. On the
other hand, manual mapping is time consuming, subjective and the expert could use an
incorrect `mental' model (Church et al. 1995).

Because the interpolated precipitation maps are often used as inputs for hydrologic
models it is useful to evaluate their cross-consistency with respect to balancing
constraints against measured runoff data. The grided runoff maps can be computed
within the framework of the hydrologic water balance as:

R � Pÿ E �13�
where R[mm/year] is runoff, P[mm/year] is interpolated precipitation, and E[mm/year]
is interpolated evapotranspiration. Areal averages of runoff derived from grided runoff
maps can be compared to runoff values measured in basins. If the impact of error in the
evapotranspiration map can be considered negligible (e.g. range of E values is small),
then statistical comparison of the differences between observed and computed basin
runoff averages can be used for the evaluation of accuracy and spatial cross-consistency
of precipitation fields obtained by different methods.
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3 Application to Precipitation Data

The RST method was evaluated using two regions with significant variability in
elevation. First, we applied the method to the daily precipitation data from Switzerland
used for the Spatial Interpolation Comparison (SIC97) (Dubois et al. 1998). This
application was useful for comparison of RST with a number of other methods, before
devoting our effort to a more detailed study and application to annual mean
precipitation for Slovakia.

3.1 Daily Precipitation for Switzerland

A daily precipitation data set from Switzerland was obtained from the SIC'97 data
available at ftp://ftp.geog.uwo.ca/SIC97/intro/SIC_Introduction.htm. It consists of 100
rainfall measurements randomly extracted from a data set of 467 measurements made
in Switzerland on the 8th of May 1986 (Table 1). The participants of SIC'97 had to
estimate the daily rainfall at the 367 remaining locations (Table 1, Plate 2). Along with
the precipitation data, a DEM with a horizontal resolution of 1009.975 m (376 columns
� 253 rows) was provided as secondary information, along with country borders to
define the study area.

First, we interpolated the precipitation data by 2D RST. The tension and
smoothing were optimized by minimizing the cross-validation error (RMSE) using the
provided 100 points, resulting in ' � 104 and w � 0. These parameters were used to
interpolate the raster maps of precipitation and compute the residuals and RMSE for
the withheld 367 points. We found that the parameters based on cross-validation were
not optimal and different values of tension and smoothing, ' � 20 and w � 0:6,
resulted in the lowest RMSE for the remaining 367 points (Table 2). The RMSE for
' � 104 and w � 0 was 6.74 for the given 100 points and 5.89 for the withheld 367
points, while for ' � 20 and w � 0:6 the RMSE was 7.41 for the given 100 points and
5.48 for the 367 points. It must be noted that all SIC'97 interpolations presented in
Table 2 were accomplished without the possibility to optimize the interpolation
parameters using the 367 withheld points. Therefore a fair comparison for the 2D RST
can be made only for ' � 104 and w � 0.

We also investigated the possibility to improve the predictive accuracy for the 2D
RST by incorporating anisotropy, as several authors did in SIC'97 (e.g. Thieken 1998,
Tomczak 1998). We found that the anisotropy with � � 60o and s � 0:25 reduced the

Table 1 Statistics for the 100 given daily rainfall values [mm] and for the 367 withheld
values (Dubois 1998).

Number of observations 100 367
Minimum 1.0 0.0
Maximum 58.5 51.7
Mean 18.01 18.53
Variance 136.14 123.58
Standard deviation 11.67 11.2
Skewness 0.96 0.57
Kurtosis 0.47 ÿ0.37
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RMSE to 5.2 mm (Table 2, Plate 2a) that is the smallest RMSE among the compared
interpolation methods.

Despite the fact that several authors from SIC'97 have shown lack of correlation
between elevation and precipitation (e.g. Allard 1998, Atkinson and Lloyd 1998) and
tri- and quint-variate partial thin plate splines of Hutchinson (1998b) performed worse
than the bivariate case, we have interpolated the data by the 3D RST without
anisotropy to evaluate its capabilities to capture the impact of terrain on precipitation.
The parameters were again optimized by minimizing the cross-validation error using
the provided 100 points, resulting in ' � 10, w � 0:1 (Table 2), which also resulted in
the lowest RMSE for the remaining 367 points. Therefore, for the 3D case, the
parameters found by cross-validation using only the given 100 points were considered
optimal. The RMSE was lower than for the isotropic 2D RST and slightly higher than
for the anisotropic 2D RST (Table 2). Incorporation of terrain in 3D RST at 1km
resolution has substantially increased the complexity of the spatial pattern of
precipitation when compared with the 2D RST map (Plate 2a,b, see plate section).
This complexity can be reduced by using a smaller value of vertical rescaling c, or by
using a DEM with lower resolution (Thornton et al. 1997). However, while leading to
smoother, less complex precipitation maps, these approaches increased the RMSE. The
comparison with the 2D RST interpolation from all 467 points (Plate 2c) shows that
using only the given 100 points without the elevation leads to simplification of the
precipitation pattern (Plate 2a); however, the pattern improves when the same 100
points are used together with elevation (Plate 2b). Moreover, the introduction of

Table 2 The 10 methods with the lowest RMSE from SIC'97 (compiled from Dubois et al.
1998) and the RMSE for the 2D and 3D RST. The 2D RST results with optimum parameters
found by minimizing the RMSE for the 367 points are denoted by *. The remainder of the
methods used only 100 points to optimize the parameters. While the methods are ordered
according to the RMSE, the order does not represent their performance because the RMSE
reflects only one aspect of accuracy. For different criteria, e.g. range, the order may be
different.

Method RMSE [mm]

*2D RST with anisotropy ' � 20;w � 0:6; � � 60�; s � 0:25 5.20
Multiquadric with anisotropy (Thieken 1998) 5.31
3D RST ' � 10;w � 0:1; c � 20; d � 1 km 5.39
Linear kriging (Saveliev et al. 1998) 5.46
*2D RST ' � 20;w � 0:6 5.48
Multiquadric (Thieken 1998) 5.57
2D TPS (untransformed data, Hutchinson 1998a) 5.60
Neural Network Residual Kriging (Demyanov et al. 1998) 5.63
Probability Class Kriging (Allard 1998) 5.74
IRF-K (Bruno and Capicotto 1998) 5.74
2D RST ' � 104;w � 0:0 5.89
Ordinary kriging with anisotropy (Atkinson and Lloyd 1998) 5.97
Indicator kriging with anisotropy (Atkinson and Lloyd 1998) 6.00
Zone kriging with anisotropy (Saveliev et al. 1998) 6.14
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elevation captured both positive and negative relationships between precipitation and
elevation in different subregions of the study area. It is reasonable to expect that
incorporation of anisotropy into 3D RST may provide an even better result and it is
therefore being considered for implementation.

3.2 Annual Mean Precipitation for Slovakia

Long-term annual mean precipitation values were obtained from 423 meteorological
stations and from 12 storage gauges of the Slovak Hydrometeorological Institute
network. Length of records was 30 years (1951±80) for all meteorological stations and
for four storage gauges, and 20 years (1961±80) for eight storage gauges. General
statistics of observed precipitation values are presented in Table 3. The elevation data
were provided with 1 km resolution (Figure 1). Manually produced isoline maps of the
annual mean precipitation and evapotranspiration from the 1951-80 long-term period,
as well as long-term (1951±80) annual mean runoff data from 57 gauged sites were used
for the evaluation of the interpolation methods. The gauged sites represent outlets of
basins ranging in size from 40 to 3800 km2 (Figure 1).

We have tested the suitability of both 2D and 3D RST for interpolation of this
long-term precipitation data. First, the impact of change in various parameters on the
predictive accuracy of 3D RST was evaluated using the cross-validation procedure for
all 435 data points from Slovakia (Figure 2) with the following results:

• RMSE sharply increases for lower values of tension if smoothing w � 0. A small
value of smoothing (e.g. w � 0:1) improves the behavior of the function (Mitasova
et al. 1995, Rohling et al. 1998) and results in the lowest RMSE values with the
optimal value of the tension ' � 15. Higher values of smoothing increase the
RMSE (Figure 2).

• Higher vertical scaling c lowers the impact of changing the tension parameter, with
c � 50 leading to the lowest RMSE.

• The resolution and smoothing of the third variable (DEM) also have an impact on
the RMSE (Thornton et al. 1997). For the optimized values of smoothing, tension
and vertical scaling, DEM resolutions 500, 1000 and 2000 m resulted in 73.2, 72.3
and 80.3 mm RMSE, respectively. We have also smoothed the DEM, using the
RST program modified for raster data input, with the lowest RMSE achieved for
smoothing wel � 15. However, when the hydrologic water balance was considered,
the best results were obtained for wel � 5.

Table 3 Statistics of the 435 observed annual mean precipitation values [mm] in Slovakia

Number of observations 435
Minimum 492
Maximum 2091
Mean 735
Variance 36937.05
Standard deviation 192.19
Skewness 2.416
Kurtosis 9.112
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The tension and smoothing parameters for the 2D RST were optimized using the
same approach. The parameters with the minimal RMSE for both 2D and 3D RST are
listed in Table 4, and the corresponding precipitation maps are presented in Plate 3, see
plate section. The 3D RST map shows patterns that are clearly related to topography,
with minimum precipitation at lowlands and increasing precipitation values in the
mountains. The most important differences between the 2D and 3D RST maps are in
mountainous areas with sparse data. The 3D RST was able to predict high
precipitation in these areas that is in agreement with well-known precipitation
behavior and observed data from other mountainous areas.

To evaluate the accuracy and validity of precipitation maps interpolated by RST,
we compared the results with:

• kriging and co-kriging,
• an expert hand-drawn precipitation map,
• runoff estimates from manual maps, and
• observed runoff.

Figure 1 Digital elevation model of Slovakia with precipitation stations and basin
boundaries

Table 4 The list of optimal RST parameters for the annual mean precipitation in Slovakia

Parameter 2D 3D

Tension ' 85 15
Smoothing w 0.1 0.1
Vertical scaling c ± 50
Anisotropy ± ±
Smoothing of 3rd variable ± 5.0
Spatial resolution of DEM ± 1000 m
RMSE 93.2 mm 72.3 mm

144 J Hofierka, J Parajka, H Mitasova and L Mitas

ß Blackwell Publishers Ltd. 2002



Figure 2 Impact of tension, smoothing and vertical scaling on predictive error for 3D RST
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Results of the comparison between RST, kriging and co-kriging (from Parajka 1999)
are presented in Table 5. The most noticeable differences among the interpolation
methods are statistical parameters of range and sample variance. Although the 3D RST
estimates produced the highest range of differences, the lowest sample variance
statistics indicate that this method gives the most satisfactory results. While
incorporation of terrain has not reduced the range of errors, it has reduced the sample
variance for both co-kriging and the 3D RST.

The spatial cross-consistency of the interpolated precipitation map was evaluated
using a comparison with an expert hand-drawn precipitation map (Plate 4a). The map
was digitized and transformed to a grid using linear triangulation. A similar approach
was used by Parajka (1999), for the evaluation of the cross-consistency between
kriging, co-kriging and expert-drawn precipitation maps and by Custer et al. (1996) in
their evaluation of ANUSPLIN. The difference between the computed 3D RST map
and the digital interpretation of the expert-drawn precipitation map was expressed as a
grid map of absolute percentile differences (Plate 4b) and frequencies of each category
of difference were tabulated (Table 6). Table 6 shows that the 3D RST precipitation
map is closer to the expert-drawn precipitation map than the kriging or the co-kriging
estimates. The differences between the 3D RST grid map and the expert-drawn
precipitation map are within the range of �10% for 89% of Slovakia. The largest
differences are observed in some mountainous regions with very sparse observations,

Table 5 Statistical summary of interpolation errors (withheld sample minus interpolated
value [mm]) for cross-validation procedure.

KRIGING COKRIGING 2D RST 3D RST

count 435 435 435 435
minimum ÿ213 ÿ319 ÿ694 ÿ417
maximum 701 638 294 765
range 914 957 988 1182
mean 3.10 2.18 1.73 ÿ2.10
std. deviation 92.69 82.29 93.26 72.38
std. error 4.44 3.95 4.47 3.47
sample variance 8592 6772 8697 5239
RMSE 92.6 82.2 93.2 72.3

Table 6 Absolute percentile differences between grid precipitation maps constructed using
3D RST, 2D RST, kriging and co-kriging methods (PRECIPMAP) and digital interpretation of
expert-drawn precipitation map (PMAP).

Area [%] of Slovakia Absolute % difference ((PRECIPMAP-PMAP)/PMAP)�100
0%±10% 10%±20% 20%±30% 30% and more

3D RST 89% 9% 2% 0%
2D RST 81% 12% 5% 2%
KRIGING 76% 16% 5% 3%
COKRIGING 81% 16% 3% 1%
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but in these areas, both the interpolated and hand drawn map have a high level of
uncertainty.

The consistency of the results has also been tested within the framework of the
hydrologic water balance. For each precipitation map: expert-drawn, 2D RST, 3D
RST, kriging, and co-kriging, a long-term annual mean runoff map was created, using
a water balance equation (13), with the spatial distribution of evapotranspiration
represented by the digital interpretation of an expert-drawn evapotranspiration map.
The differences between computed basin averages of annual mean runoff and gaged
runoff values for 57 basins were calculated and a statistical comparison of these
differences is provided in Table 7. The smallest range, as well as the lowest standard
error and sample variance values of the average basin runoff differences indicate, that
average basin runoff values computed from 3D RST estimates come the closest to the
measured values. In comparison with the other precipitation maps used in this
comparison, the 3D RST map performs the best in terms of balancing the constraints of
the water balance equation. Table 7 demonstrates that incorporation of terrain into
interpolation improves the derived estimates of runoff. Detailed water balance
comparison in regions with the highest differences between the expert-drawn
precipitation map and 3D RST (Table 8) has shown that the estimates provided by
the 3D RST are more accurate with respect to measured runoff than the estimates from
the expert-drawn precipitation map. The statistical evaluation presented in Tables 7
and 8 also shows that the range of differences between the annual runoff basin averages
computed from different precipitation maps is higher than the range of
evapotranspiration for the entire Slovakia, which is about 250 mm. Therefore, the
evapotranspiration map error has a negligible impact on the evaluation of different
interpolation methods used to compute the precipitation maps.

The results of this comprehensive evaluation using the cross-validation,
comparison with kriging, co-kriging, expert-drawn map and runoff demonstrate that
the 3D RST method offers reliable and reasonably accurate estimates of annual mean
precipitation. Thus, the RST can be used to replace the less efficient manual maps
describing the spatial variability of the long-term precipitation over the territory of
Slovakia.

Table 7 Statistical evaluation of differences between annual runoff basin averages [mm]
computed from water balance equation using different precipitation maps and measured
runoff values

PMAP Kriging Cokriging 2D RST 3D RST

Mean 23 ÿ67 ÿ13 ÿ53 ÿ7
Standard Error 10.46 12.58 10.06 12.04 8.86
Standard Deviation 78.94 94.98 75.97 90.88 66.93
Sample Variance 6231.81 9021.30 5771.43 8260.02 4479.2
Range 483 421 400 498 324
Minimum ÿ216 ÿ356 ÿ298 ÿ370 ÿ229
Maximum 267 64 102 128 95
Count 57 57 57 57 57
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4 Conclusions

Our study has demonstrated that RST is an appropriate method for interpolation of
both daily and long term, annual mean precipitation data. Its accuracy was tested using
various criteria and compared to several methods using precipitation data sets for the
mountainous countries of Slovakia and Switzerland. It was demonstrated that RST is
highly competitive with multiquadrics and kriging approaches. Its accuracy depends on
the adequate choice of parameters, especially tension, smoothing and for the 3D RST
also the resolution and smoothing of the DEM. The RST parameters can be optimized
using cross-validation, however, the procedure does not guarantee optimal parameters
for all cases. The criteria for a representative cross-validation data set that would lead
to optimal parameters should be further investigated. The incorporation of the third
variable ± terrain elevation ± showed a marked improvement in terms of both
interpolation accuracy and the validity of spatial pattern in mountainous areas with
sparse data, especially for the long-term precipitation averages.

Interpolation of daily precipitation data was more demanding and sensitive to the
density and spatial distribution of data. In situations when daily data depend more on
the synoptic situation than on elevation, the RST with anisotropy may be the most
appropriate solution (e.g. rainfall under prevailing wind direction). The formulation of
RST is suitable for applications requiring interpolation for multiple time periods (e.g.
days, hours) using data measured at the same locations. In such a case most of the
computation can be done only once and both the reparametrization and computation
of the resulting grid is relatively fast. It can be concluded that the RST is a flexible and
effective method for spatial interpolation of precipitation data. The incorporation of
RST within GRASS5 as s.surf.rst and s.vol.rst commands makes it especially suitable
for GIS applications.
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Plate 1 Dynamic insertion into an ordinary Voronoi diagram. Each frame shows the
resulting Delaunay triangulation (lighter triangles) and Voronoi tessellation (darker
polygons) of progressively adding a new data point. Note that each of the four corners
also supply a point

Plate 1 from I Lee and M Gahegan `Interactive Analysis Using Voronoi Diagrams:
Algorithms to Support Dynamic Update from a Generic Triangle-based Data Structure',
pages 89±114



Plate 2 Map of daily precipitation interpolated by a) 2D RST with anisotropy using 100
points, b) 3D RST using 100 points, c) 2D RST using all 467 points, red symbols represent
the given 100 points while the black symbols are the sites with the withheld values

Plate 2 from J Hofierka, J Parajka, H Mitasova and L Mitas `Multivariate Interpolation of
Precipitation Using Regularized Spline with Tension', pages 135±150

ß Blackwell Publishers Ltd. 2002



Plate 3 Annual mean precipitation maps for Slovakia interpolated by a) 2D RST, b) 3D
RST

Plate 3 from J Hofierka, J Parajka, H Mitasova and L Mitas `Multivariate Interpolation of
Precipitation Using Regularized Spline with Tension', pages 135±150
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Plate 4 Evaluation of the 3D RST by comparison with a) expert-drawn precipitation map,
b) absolute differences (in %) between the 3D RST precipitation map and expert-drawn
precipitation map

Plate 4 from J Hofierka, J Parajka, H Mitasova and L Mitas `Multivariate Interpolation of
Precipitation Using Regularized Spline with Tension', pages 135±150
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Plate 5 Perspective view of MCP HR estimates for the four kangaroos: Tegan (105.37 ha,
Schoener index = 2.06), Kiaya (255.03 ha, Schoener index = 1.28), Yackie (166.76 ha,
Schoener index = 2.08), and Micheala (35.41 ha, Schoener index = 1.74) from the
southwest. HRs quoted as surface area. Colour greatly increases the quality of the image

Plate 5 from S W Selkirk and I D Bishop `Improving and Extending Home Range and Habitat
Analysis by Integration with a Geographic Information System', pages 151±159

ß Blackwell Publishers Ltd. 2002



Plate 6 Planar view of the MAPFK(.95) HR estimates for Tegan (thick line, 112.1 ha), Kiaya
(speckled line, 239.9 ha), Yackie (thin line, 155.2 ha) and Micheala (dashed line, 43.7 ha).
This image is easier to interpret when seen on the computer screen in colour. HR's as
surface area

Plate 6 from S W Selkirk and I D Bishop `Improving and Extending Home Range and Habitat
Analysis by Integration with a Geographic Information System', pages 151±159
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Plate 7 Time and season MAPFK(.5) Hr estimates for Tegan. Day HR = 27.4 ha (dashed
line), night = 6.44 ha (full line), summer = 15.66 ha (dashed line), and winter = 12.71 ha
(full line)

Plate 7 from S W Selkirk and I D Bishop `Improving and Extending Home Range and Habitat
Analysis by Integration with a Geographic Information System', pages 151±159
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Plate 8 Observational data and the MAPFK(.95) HR estimate for Micheala. Catchment
boundary fence (dashed line) from the RMDB is also shown

Plate 8 from S W Selkirk and I D Bishop `Improving and Extending Home Range and Habitat
Analysis by Integration with a Geographic Information System', pages 151±159
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