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Abstract— Terrestrial laser scanning (TLS) is utilized to 

monitor bank erosion along a stream that has incised through 
historic millpond (legacy) sediment. A processing workflow is 
developed to generate digital terrain models (DTMs) of the 
bank’s surface from the TLS point cloud data. Differencing of 
the DTMs reveals that the majority of sediment loss stems from 
the legacy sediment layer. The DTM time series is stacked into a 
voxel model to form a space-time cube (STC). The STC provides 
a compact representation of the bank’s spatiotemporal evolution 
captured by the TLS scans. The continuous STC extends this 
approach by generating a voxel model with equal temporal 
resolution directly from the point cloud data. Novel visualizations 
are extracted from the STCs to explore patterns in surface 
evolution. Results show that erosion is highly variable in space 
and time with large scale erosion being episodic due to bank 
failure within legacy sediment.  
 

Index Terms— lidar point cloud, stream erosion, legacy 
sediment, voxel model, GRASS GIS  

I. INTRODUCTION 
AND clearing for agricultural purposes following 
European settlement of North America resulted in upland 

erosion rates 50-400 times above long-term geologic rates in 
much of the North Carolina USA Piedmont region [1]. A 
considerable amount of the eroded sediment was subsequently 
aggraded on floodplains and impounded in the slackwater 
ponds behind milldams. This trapped “legacy” sediment is 
commonly mistaken for natural floodplain deposition and has 
remained largely unrecognized as a potential source of 
accelerated sediment erosion contributing to modern water 
quality impairment [2].  

Terrestrial laser scanning (TLS) provides an effective 
means for repeated, high spatial resolution (cm to mm-scale) 
mapping of 3D landscape features [3], [4]. Differencing of 
digital terrain models (DTMs) [5] has become the standard 
approach for analyzing surface change from repeated scans, 
but with larger number of scans, individual differences 
provide only a limited view of the spatiotemporal pattern of 
the monitored process. In [3],[6], a space-time cube (STC) 
approach is proposed for analyzing 2.5D (one z value per x,y 
coordinate) airborne lidar time series data. This STC concept 
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is similar to the approach proposed for epidemiologic studies 
[7] or remote sensing meteorological data [8] except our 
methodology was developed to analyze coastal elevation 
evolution. 

In this work, the STC approach is extended to analyze a 
time series of 3D TLS surveys acquired to monitor bank 
erosion along a stream that has incised through legacy 
sediment. A data processing workflow is developed to enable 
the measurement of surface change from the TLS point 
clouds. The STC approach transitions analysis from static 
DTMs to terrain abstraction as a dynamic 3D layer using 
voxel model representation. Novel visualizations are extracted 
from the STC to explore spatiotemporal patterns in the stream 
bank’s evolution.  

II. STUDY AREA AND TLS SURVEYS  
 The study area is a stream located in Raleigh, North 

Carolina within the Piedmont region. For this analysis, an 11.5 
m wide by 3.2 m high section of bank along the outside 
meander bend of the stream was mapped [Fig. 1(a)]. Three 
distinct sedimentary layers comprise the stream bank: pre-
European settlement, pre-milldam, and post-milldam [9]. The 
pre-European and post-milldam deposits are primarily silts 
and clays, whereas the pre-milldam layer is fine-to-medium 
sand.    

A series of nine TLS surveys forming eight sequential data 
epochs (Table I)  were acquired over an 18 month period using 
a Leica Geosystems ScanStation 2 mounted on a static tripod. 
The ScanStation 2 operates at a blue-green (532 nm) 
wavelength with a maximum laser pulse rate of 50,000 Hz and 
300 m maximum range at 90% albedo. The scanner is a 
discrete return system that records one return per emitted 
pulse. Factory quoted position accuracy is 6 mm at 50 m range 
(1 !). A rotating sensor-head with tilt compensation coupled 
with an oscillating mirror for horizontal and vertical beam 
steering enables a 360 x 270 degree maximum field-of-view.  

For each survey, scans were acquired from two different 
positions at a resolution of 1 cm point spacing at 12 m range. 
The point density overlap resulted in a mean point density 
exceeding 1 pt/cm2 on the exposed bank surface. Six static 
targets placed within the scene defined a localized coordinate 
frame from which to reference the scans relative to each other 
across the epochs. The targets consisted of aluminum pie 
plates painted with a reflective bulls-eye pattern for detection 
within the point clouds. Targets were mounted to the base of 
trees and located at different distances and orientations for 
favorable registration geometry.   
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All scans were registered relative to the first survey point 
cloud using the Leica Cyclone registration software. Targets 
that degraded accuracy during a registration process were 
disabled but at minimum four targets were used. The 
registration software reports the mean absolute error (MAE) 
which is the average of the absolute difference in the 
horizontal and vertical component of control points shared 
between scans during a registration process. The average 
MAE across all surveys was estimated to be ~1.1 cm. Table I 
lists the MAE for each survey (end-survey for listed epochs) 
relative to the 12/10/2010 baseline survey.   

TABLE I 
TLS SURVEY EPOCHS AND REGISTRATION MEAN ABSOLUTE ERROR (MAE) 
Time period Survey dates Days between scans MAE (cm) 
Epoch 1 12/10/ 2010 to 01/29/2011 50 1.1  
Epoch 2 01/29/2011 to  04/07/2011 68 0.8 
Epoch 3 04/07/2011 to 08/24/2011 139 1.2 
Epoch 4 08/24/2011 to 10/20/2011 57 1.1 
Epoch 5 10/20/2011 to 01/31/2012 103 1.2 
Epoch 6 01/31/2012 to 04/17/2012 77 1.3 
Epoch 7 04/17/2012 to 06/08/2012 52 1.1 
Epoch 8 06/08/2012 to 06/27/2012 19 1.2 

 

III. METHODOLOGY 

A. Data Processing 
Due to the unique surface geometry and orientation of the 

stream bank relative to the scanner field-of-view, vegetation 
occlusion, and true 3D structure of the point cloud, a 
systematic data processing workflow was developed to 
measure surface change . The following steps were applied to 
process each survey’s point cloud data:  
1. Manually clip the stream bank region of the point cloud. 
2. Rotate the point cloud relative to a 2D least-squares line 

fit to the x,y coordinates of the first survey point cloud 
[4]. 

3. Transpose the y and z-axis such that the z-coordinate now 
represents the orthogonal distance to a channel oriented x-
y vertical base plane from which surface change can be 
measured (see Fig. 2). This z-coordinate is referred to 
herein as surface distance. 

4. Filter non-surface points (e.g. vegetation) using the TIN 
densification filter of [10] implemented in [11] [Fig. 
1(b)].  

5. Simultaneously interpolate and smooth the filtered points 
using a regularized spline with tension [12] into a 1 cm-
resolution digital terrain model (DTM) of surface distance 
values [Fig. 1(c-d)].  

The result of the workflow is a time series of bare-earth DTMs 
representing the bank surface at time snapshot tk, where k=1, 
…, n  surveys.   

The data processing workflow transforms the stream bank 
point clouds into a 2.5D representation. This enables the 
application of the TIN densification filter algorithm (step 4 
above), which was developed for 2.5D airborne lidar data. The 
filter works by generating a sparse TIN from neighborhood 
minima and then progressively adds points based on certain 
criteria in relation to the triangle that contains it [10]. To apply 
the filter, the parameters were adjusted to account for the TLS 

data density and spatial scale of the measured surface. Point 
clouds were textured with scanner co-aligned RGB imagery 
acquired during the surveys to manually segment regions of 
the cloud into ground and non-ground points. Parameters were 
tuned in an iterative process until filter results matched well (> 
92% correct) with the set of segmented points. 

 
Fig. 1. (a) Investigated section of stream bank imaged on 12/10/2010. Three 
distinct sediment layers, separated by the dashed lines, comprise the bank 
from bottom-to-top: pre-European, pre-milldam, and post-milldam (legacy). 
~10 cm at top is post-legacy sediment. (b) 12/10/2010 filtered into ground and 
non-ground points. (c-d) DTMs generated from the first and last survey. 

 
Fig. 2. Interpretation of the transformed, localized coordinate frame: x 
coordinate is distance along the stream bank, y is vertical distance, and z is 
orthogonal distance to the channel oriented x-y vertical base plane. Photo 
shows the actual channel and stream bank from the same view direction. 
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Fig. 3. (a) Discrete Space-Time Cube computed from DTMs. (b) Continuous 
Space-Time Cube computed directly from the processed point clouds.  

B. Summary Metrics of Surface Evolution 
Differencing of the derived DTMs was used to measure 

surface distance change. To estimate the volume of eroded 
sediment from the different layers, the DTMs were segmented 
based on the elevation of the disconformities separating the 
layers on the bank face. A trapezoidal approximation was then 
used to estimate volume loss for each epoch and for the entire 
18 months from the differenced DTMs.   

The TLS positional errors propagate directly into our 
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resultant DTMs. Assuming a positional error of ! z  = 1.1 cm 
for our DTM surface distance values, and propagating the 
error due to the differencing of two z 
measurements,! uncertainty = ! z1

2 +! z2
2 , this equates to a vertical 

uncertainty in change detection of approximately 1.5 cm [5].  
Spatial patterns in surface change were mapped by applying 

summary statistics on a per cell basis, so that each output cell 
in a resulting map was computed as a function of its values in 
the corresponding cells across the DTM time series. Using this 
approach several different types of raster metrics (e.g. [6]) can 
be generated to characterize dynamic regions of the surface.  

C. Space-Time Cube Representation of Surface Evolution 
Using a simple implementation of a discrete STC, the time 

series of DTMs was stacked into a voxel model (3D raster) 
[Fig. 3(a)]. Unique visualizations of stream bank surface 
evolution were then generated by extracting voxel model 
cross-sections as well as isosurfaces at specific surface 
distance values cz = . An isosurface, c = f (x, y, t) , extracted 
from the surface distance voxel model represents evolution of 
a given distance isoline (contour) in space-time. Similarly, 
time series of DTM differences representing change in surface 
distance,!z = d , between data epochs was stacked into a 
voxel model to extract isosurfaces d = f (x, y, t)  showing 
where and when the change of magnitude d occurred.  

Continuous STC extends the surface evolution 
characterization beyond the discrete DTM snapshots by 
representing the dynamic surface as a continuous trivariate 
function z=f(x,y,t), where time t is the third dimension and 
surface distance z is the modeled variable. The function f(x,y,t) 
is derived from the time series of m point clouds 

mkzyx
ktkiii ,...,1 ,}n1,...,i ),,,{( == , where x, y, z are 

coordinates, kn  is number of points in the k-th point cloud, 

and kt is the time of the survey. The data from all the point 
clouds are merged into a single point cloud 

!= }n,...,1 ),,,,{( kiiii iztyx  that is then interpolated into a 

voxel model at a desired spatial and temporal resolution using 
a trivariate interpolation method [Fig. 3(b)]. In our application, 
the voxel model forms a STC of stream bank surface distance 
values.  

A regularized smoothing spline with tension [13] was used 
for trivariate interpolation of the voxel model:  
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22)(  is the error function. 

Open-source GRASS GIS software includes an 
implementation of the trivariate spline with a smoothing 
parameter, which is often useful for processing of noisy laser 
scanning data [12]. Oct-tree segmentation procedure, a 3D 
extension of quad-tree segmentation for bivariate interpolation 
presented in [12], was implemented to support processing of 
large number of points typical for TLS surveys. Figure 4 
summarizes the data processing and analysis methodology. 

 
Fig. 4. Summary of the data processing and analysis workflow. 
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Fig. 5. Estimated volume loss by sedimentary layer. 
 

 
Fig. 6. Summary metrics of surface evolution: (a) Range of surface distance 
retreat associated with sediment loss. (b) Map of survey dates when minimum 
surface distance was observed. Red areas were at minimum during the last 
survey while blue areas were at minimum during the first survey, indicating 
aggradation over time. Both maps are overlaid on the first survey DTM.  

IV. RESULTS AND DISCUSSION 

A. Volume Change  
Visual comparison of the DTMs from the first and last 

survey indicated substantial sediment loss, especially in the 
post-milldam layer [Fig. 1(c-d)]. Differencing between the 
individual DTMs revealed that volume change was highly 
variable both in space and time. Several relatively stable 
epochs were interrupted by epochs with large, localized losses 

 

(a) 

(b) 
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of sediment. Fig. 5 shows volume loss by sedimentary layer 
for successive survey epochs. The majority of loss occurred 
during the 3rd survey epoch (Table I), which corresponded to 
the interval of highest rainfall intensities and stream discharge 
events recorded during the survey periods. Overall, a total of 
approximately 12.1 m3 of sediment was lost between the first 
and last survey. This volume of stream bank sediment loss was 
similar on a per-meter length of channel (0.7 m3 m-1 yr-1) to 
recent calculations relying upon planimetric erosion pin 
surveys from a neighboring stream also incised into millpond 
legacy sediments [9].  
 

B. Spatial Pattern of Surface Change 
To characterize spatial patterns in the evolution of the 

stream bank, the DTM time series was used to compute the 
range of surface distance change. Surface loss occurs for a 
given grid cell when the time (survey date) of surface distance 
minimum minz  >  time of surface distance maximum maxz . 
As shown in Fig. 6(a), the largest retreat in surface distance 
occurred within the lower section of the post-milldam 
sediment layer. Figure 6(b) shows the time of surface distance 
minimum. The post-milldam layer is particularly interesting 
because it experienced large sediment loss during the 3rd 
epoch but minimal change thereafter; however, the time at 
minimum is noisy within this layer reflecting redistribution of 
small amounts (few cm-level) of sediment, small unfiltered 
vegetation, and measurement error. 

Surface gain occurs for a given grid cell when time of minz  

< time of maxz . Regions where surface gain occurred were 
small and indicate the possibility of either sediment 
accumulation from failed material not yet removed by water 
flow, or stream-induced sediment deposition at the base of the 
slope. Surface gain and loss can also stem from differences in 
unfiltered vegetation cover between surveys or the filter could 
cut parts of the actual surface. Estimates of surface gain or 
loss based on range differ from simple differencing of the first 
and last surveys by incorporating all DTMs in the time series. 
For example, if an eroded area was later filled with sediment, 
this would be captured in the range-derived maps but missed 
in the last minus first survey difference.  

C.  Spatiotemporal Patterns in Space-Time Cube 
 A discrete STC with variable time interval was used for 

compact representation and visual analysis of spatiotemporal 
patterns. Figure 7 shows horizontal and vertical time slices 
extracted from the voxel model to visualize temporal 
evolution of the surface within and across the distinct 
sedimentary layers that comprise the stream bank. The cross-
sections show that the massive change associated with the 
hydrologic events during Epoch 3 (Table I) were preceded and 
followed by periods of relative stability in the post-milldam 
sediment layer of the bank. In contrast, the lower sections of 
the bank exhibited smaller changes distributed over several 
epochs with the largest losses observed in the last two epochs. 

This was further highlighted by isosurfaces representing the 

evolution of surface distance isolines. Figure 8(a) shows the 
evolution of a 2.0 m distance isoline that was mostly confined 
to the boundary of the post-milldam sediment layer during the 
first survey. Over time the stream bank started losing sediment 
within this region resulting in a decrease in surface distance. 
As a consequence, the isosurface is forced to migrate spatially 
towards the lower part of the stream bank. Change in surface 
distance between epochs was draped over the isosurface to 
characterize the sediment loss or gain over time.  

In comparison, Fig. 8(b) shows a 2.0 m isosurface extracted 
from a voxel model generated directly from the time series of 
processed point cloud data using the trivariate interpolation 
method of (1). Time resolution of the voxel model was set to 
51 days to align closely with the varying time intervals of the 
surveys. The result is a smoother representation of isosurface 
evolution compared to the discrete case shown in Fig. 8(a). 
The temporal gradient (rate of change in surface distance) was 
computed directly from (1) and draped over the isosurface. As 
observed in Fig. 8(b), the rate of loss was higher than the rate 
of gain as would be expected for an incised stream bank.  

As another example, a discrete STC of surface differences 
was used to study the spatiotemporal pattern of a given value 
of surface distance change. Figure 9 shows isosurfaces 
representing 0.5 m loss (when and where 0.5 m loss occurred), 
with the most extensive area within the legacy sediment 
during the 3rd survey epoch. Several smaller areas are 
associated with the pre-milldam layers and the two most 
recent epochs. 

 

Fig. 7. STC slices extracted from the voxel model overlaid on the first survey 
DTM. The horizontal slice cuts through pre-European sediment, and the 
vertical slices cut across all layers. Bank failure is evident in the vertical slice.  

 

Fig. 8.  (a) Isosurface for a 2.0 m distance extracted from discrete STC 
showing its spatiotemporal evolution. The isosurface is colored by the change 
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in surface distance between epochs. The lines indicate the shape and temporal 
location of the 2.0 m distance isoline during the surveys 1, 3, 4, 6. (b) 
Isosurface for a 2.0 m distance extracted from a continuous STC. Temporal 
resolution is 51 days, and isosurface is colored by rate of change.  

 
Fig. 9.  Isosurface for a 0.5m distance change showing its temporal evolution 
spatially along the bank surface (colored by time). The isosurface is extracted 
from the space-time cube of surface distance differences. 

D. Discussion 
TLS enables high accuracy 3D measurements of stream 

bank evolution at orders of magnitude higher spatial resolution 
compared to manual survey methods, such as erosion pin 
studies. The TLS data captured the spatial variability in large 
scale erosion and small scale (cm-level) changes in surface 
material. A further improvement is that TLS made it possible 
to quantify the volume of sediment loss as a function of 
stratigraphic unit. This is important for estimating the percent 
contributions of fine-grained (<64 µm) sediment from 
different layers delivered to the stream as it is this grain-size 
fraction that contributes most to regional stream turbidity 
impairment.  

The data processing and analysis workflow can be directly 
applied to measure surface change over much longer reaches 
of stream than examined here. The efficiency of TLS for 
mapping stream banks over longer distances (e.g. kilometer) 
will depend on the scanner characteristics, most notably 
effective range, and terrain complexity among other factors. 

STC cross-sections and isosurfaces can both aid in 
visualizing surface evolution as well as reveal connections to 
the physical processes that underlie the observed change. For 
example, the contrast between the episodic erosion event that 
occurred in the post-mill dam section and continuing smaller 
changes in the older sediments is evident in the cross-sections 
of Fig. 7 and isosurfaces of Fig. 8 and 9. As observed, there is 
an abrupt spatially extensive change associated with the 3rd 
epoch in the post-milldam layer followed by more gradual 
losses in the two bottom layers over the more recent surveys. 
This indicates different controlling processes, such as seepage 
and fluvial erosion. In this way, certain physical processes can 
generate characteristic isosurface shapes (patterns) of surface 
evolution. These characteristic patterns can potentially be 
searched for within a STC of terrain evolution, such as within 
a classification regime, to detect certain processes underlying 
observed landform change. 

The discrete STC provides a compact representation of the 
DTM time series derived from the TLS surveys. It is a 
snapshot representation of surface evolution where the time 
interval is variable dependent on the survey period. In 
contrast, the continuous STC enables uniform time intervals 

through trivariate interpolation. This provides a smoothed 
(continuous) representation of surface evolution. Furthermore, 
spatiotemporal gradients (vectors of fastest surface change) 
can be directly extracted through (1) [see Fig. 8(b)] to further 
explore the relation between surface evolution and the 
underlying physical processes. The applicability of the 
continuous STC for modeling evolution of the surface 
between surveys will depend on the temporal resolution of the 
data and the underlying dynamics driving the surface change.  

V. CONCLUSION 
A raster and STC methodology for analysis of stream bank 

evolution captured by TLS surveys was presented. The data 
processing workflow transforms TLS point cloud data into 
DTMs to measure surface change. The STC approach 
transitions analysis from static portrayal to terrain abstraction 
as a dynamic 3D voxel model. Raster-based metrics and 
voxel-based visualizations revealed that erosion at the study 
site was highly variable in space and time with the largest 
observed erosion due to bank failure within the legacy 
sediment layer. The methodology presented here is general 
and can be used with any software that supports 2D and 3D 
raster data processing, trivariate interpolation, and volume 
visualization. Our implementation was based on open-source 
GRASS GIS. 
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